Anisotropic Elastoplasticity at Finite Strains: Formulation and Numerical Implementation

1st Workshop on Nonlinear Analysis of Shell Structures

INTALES GmbH Engineering Solutions
University of Innsbruck, Faculty of Civil Engineering
University of Innsbruck, Faculty of Mathematics, Informatics and Physics

Natters/Tyrol, 23/04/2010
Implementation of a constitutive model

- Examination of influence of anisotropy
- Performing cross checks
- Unlimited access to state variables

Requirements for the material model:

- Elastoplastic behaviour
- Anisotropy
- Moderate strains
- Upgradeability
Multiplicative decomposition of deformation gradient not unique

\[F = F^e F^p = F^e QQ^T F^p = \tilde{F}^e \tilde{F}^p \]
Basic Framework

Concepts with assumptions of the rotational part of F^p

- Eidel and Gruttmann, 2003 (wrt intermediate configuration)
- Sansour, 2008 (wrt reference configuration)

Concepts in which the rotational part of F^p is neglected

- Miehe, 2002 (additive approach, wrt reference configuration)
Additive Approach

Assumption: existence of a plastic metric G^p

$$C = F^T F$$

$$G^p = F^p \, T \, F^p$$

Additive decomposition of strain measure

$$E(C) = E^e + E^p(G^p)$$

Strain measure: Logarithmic strains (Lagrangian)

$$E(C) = \frac{1}{2} \ln \, C$$

$$E^p(G^p) = \frac{1}{2} \ln \, G^p$$
Features and Advantages:

- At isotropy and with logarithmic strains:
 \[F = F^e F^p \iff E(C) = E^e + E^p(G^p) \]
- Concepts from small strain theory can be used
- Volume preserving behaviour assured
Modular structure for implementation:

Geometric Preprocessor \Rightarrow Model \Rightarrow Geometric Postprocessor

Applicability of Algorithms from the small strain theory
Constitutive Models

- Isotropic:
 - Hencky Material
 - von Mises flow criterion

- Anisotropic:
 - anisotropic Hencky-type Material
 - Hoffman-Hill criterion
Hencky Material:
Hyperelastic constitutive model based on logarithmic strains

\[\mathbf{T} = \frac{\partial \psi}{\partial \mathbf{\epsilon}} = \mathbf{C} : \mathbf{\epsilon} \]
Based on the Hoffman-Hill criterion

\[\Phi(\tau, \sigma_y) = \frac{1}{2} \tau^T P \tau + q^T \tau - \sigma_y^2 \]

- Anisotropic extension of the von Mises criterion
- Distinction between tension and compression
Implementation

- in a FE program in MATLAB
- as a User Material in Abaqus (Fortran)
Example: Necking of a rod

Roland Traxl (University of Innsbruck)
ACOSTA-Workshop
Natters/Tyrol, 23/04/2010
IMPLEMENTATION

Comparison with Abaqus Material

- Similar results for plasticity without hardening
- Differences at hardening and anisotropy
- Differences for big elastic deformations
Summary

- Anisotropic constitutive model with tension compression distinction
- Additive decomposition of logarithmic strains
- Algorithm from small strain theory can be used
 - Return mapping
 - Analytical determination of Jacobian
 - Upgradeability
- Adequate approach for moderate strains